IDEAS home Printed from https://ideas.repec.org/a/igg/jsda00/v4y2015i4p1-16.html
   My bibliography  Save this article

Towards Harnessing Phone Messages and Telephone Conversations for Prediction of Food Crisis

Author

Listed:
  • Andrew Lukyamuzi

    (Institute of Computer Science, Mbarara University of Science and Technology, Mbarara, Uganda)

  • John Ngubiri

    (College of Computing and Information Sciences, Makerere University, Uganda)

  • Washington Okori

    (Uganda Technology and Management University (UTAMU), Kampala, Uganda)

Abstract

Food insecurity is a global challenge affecting millions of people especially those from least developed regions. Famine predictions are being carried out to estimate when shortage of food is most likely to happen. The traditional data sets such as house hold information, price trends, crop production trends and biophysical data used for predicting food insecurity are both labor intensive and expensive to acquire. Current trends are towards harnessing big data to study various phenomena such sentiment analysis and stock markets. Big data is said to be easier to obtain than traditional datasets. This study shows that phone messages archives and telephone conversations as big datasets are potential for predicting food crisis. This is timely with the current situation of massive penetration of mobile technology and the necessary data can be gathered to foster studies such as this. Computation techniques such as Naïve Bayes, Artificial Networks and Support Vector Machines are prospective candidates in this strategy. If the strategy is to work in a nation like Uganda, areas of concern have been highlighted. Future work points at exploring this approach experimentally.

Suggested Citation

  • Andrew Lukyamuzi & John Ngubiri & Washington Okori, 2015. "Towards Harnessing Phone Messages and Telephone Conversations for Prediction of Food Crisis," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 4(4), pages 1-16, October.
  • Handle: RePEc:igg:jsda00:v:4:y:2015:i:4:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSDA.2015100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsda00:v:4:y:2015:i:4:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.