IDEAS home Printed from https://ideas.repec.org/a/igg/jsda00/v2y2013i2p14-42.html
   My bibliography  Save this article

Reliable Face Recognition Using Artificial Neural Network

Author

Listed:
  • Shaimaa A. El-said

    (Department of Electronics and Communications, Zagazig University, Zagazig, Egypt)

Abstract

Facial detection and recognition are among the most heavily researched fields of computer vision and image processing. Most of the current face recognition techniques suffer when the noises affect the global features or the local intensity pixels of the images under consideration. In the proposed Reliable Face Recognition System (RFRS) system, for the first time, a combination of Gabor Filter (GF), Principal component analysis (PCA) for efficient feature extraction, and ANN for classification is employed. This demonstrates how to detect faces in noisy images by training the network several times on various input; ideal and noisy images of faces. Applying GF before PCA reduces PCA sensitivity to noise, provides a greater level of invariance, and trains the ANN on different sets of noisy images. The output of the ANN is a vector whose length equal to the distinct subjects in Olivetti Research Laboratory (ORL). The ANN is trained to output a 1 in the correct position of the output vector and to fill the rest of the output vector with 0’s. Experimentation is carried out on RFRS by using ORL datasets. The experimental results show that training the network on noisy input images of face greatly reduce its errors when it had to classify or recognize noisy images. For noisy face images, the network did not make any errors for faces with noise of mean 0.00 or 0.05, while the average recognition rate varies from 96.8% to 98%. When noise of mean 0.10 is added to the images the network begins to make errors. For noiseless face images, the proposed system achieves correct classification. Performance comparison between RFRS and other face recognition techniques shows that for most of the cases, RFRS performs better than other conventional techniques under different types of noises and it shows the high robustness of the proposed algorithm.

Suggested Citation

  • Shaimaa A. El-said, 2013. "Reliable Face Recognition Using Artificial Neural Network," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 2(2), pages 14-42, April.
  • Handle: RePEc:igg:jsda00:v:2:y:2013:i:2:p:14-42
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijsda.2013040102
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsda00:v:2:y:2013:i:2:p:14-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.