IDEAS home Printed from https://ideas.repec.org/a/igg/jrqeh0/v12y2023i1p1-23.html
   My bibliography  Save this article

A New Classification Model Based on Transfer Learning of DCNN and Stacknet for Fast Classification of Pneumonia Through X-Ray Images

Author

Listed:
  • Jalal Rabbah

    (University of Hassan II, Morocco)

  • Mohammed Ridouani

    (University of Hassan II, Morocco)

  • Larbi Hassouni

    (University of Hassan II, Morocco)

Abstract

Coronavirus has spread worldwide, with over 688 million confirmed cases and 6.8 million deaths. The results could be important as containment restrictions begin to be relaxed and we are not immune to new strains. They underscore the need to introduce increasingly effective techniques to deal with such a spread and help identify new infections more quickly, at a reasonable cost and with a minimum error rate. Machine learning models constitute a new approach, used increasingly in this field. In this proposed work, the authors built a classification model named CovStacknet based on StackNet metamodeling methodology combined with the deep convolutional neural network as the basis for feature extraction from x-ray images. Firstly, the proposed model used VGG16 as a transfer learning of deep convolutional neural networks and achieved an accuracy score of 98%. Secondly, the proposed model is extended to evaluate four other deep convolutional neural networks, ResNet-50, Inception-V3, MobileNet-V2 and DenseNet, and ResNet-50, has achieved the best performance.

Suggested Citation

  • Jalal Rabbah & Mohammed Ridouani & Larbi Hassouni, 2023. "A New Classification Model Based on Transfer Learning of DCNN and Stacknet for Fast Classification of Pneumonia Through X-Ray Images," International Journal of Reliable and Quality E-Healthcare (IJRQEH), IGI Global, vol. 12(1), pages 1-23, January.
  • Handle: RePEc:igg:jrqeh0:v:12:y:2023:i:1:p:1-23
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJRQEH.326765
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jrqeh0:v:12:y:2023:i:1:p:1-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.