IDEAS home Printed from https://ideas.repec.org/a/igg/jncr00/v8y2019i2p1-17.html
   My bibliography  Save this article

Handling Constraints Using Penalty Functions in Materialized View Selection

Author

Listed:
  • Anjana Gosain

    (USICT, GGSIPU, New Delhi, India)

  • Kavita Sachdeva

    (SGT University, Gurugram, India)

Abstract

Materialized view selection (MVS) plays a vital role for efficiently making decisions in a data warehouse. This problem is NP-hard and constrained optimization problem. The authors have handled both the space and maintenance cost constraint using penalty functions. Three penalty function methods i.e. static, dynamic and adaptive penalty functions have been used for handling constraints and Backtracking Search Optimization algorithm (BSA) has been used for optimizing the total query processing cost. Experiments were conducted comparing the static, dynamic and adaptive penalty functions on varying the space constraint. The adaptive penalty function method yields the best results in terms of minimum query processing cost and achieves the optimality, scalability and feasibility of the problem on varying the lattice dimensions and on increasing the number of user queries. The authors proposed work has been compared with other evolutionary algorithms i.e. PSO and genetic algorithm and yields better results in terms of minimum total query processing cost of the materialized views.

Suggested Citation

  • Anjana Gosain & Kavita Sachdeva, 2019. "Handling Constraints Using Penalty Functions in Materialized View Selection," International Journal of Natural Computing Research (IJNCR), IGI Global, vol. 8(2), pages 1-17, April.
  • Handle: RePEc:igg:jncr00:v:8:y:2019:i:2:p:1-17
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJNCR.2019040101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jncr00:v:8:y:2019:i:2:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.