IDEAS home Printed from https://ideas.repec.org/a/igg/jncr00/v7y2018i1p1-14.html
   My bibliography  Save this article

Neural Network Model for Semantic Analysis of Sanskrit Text

Author

Listed:
  • Smita Selot

    (Department of Computer Applications, SSTC, Bhiali, India)

  • Neeta Tripathi

    (SSTC, Bhiali, India)

  • A. S. Zadgaonkar

    (CV Raman University, Bilaspur, India)

Abstract

Semantic analysis is the process of extracting meaning of the sentence, from a given language. From the perspective of computer processing, challenge lies in making computer understand the meaning of the given sentence. Understandability depends upon the grammar, syntactic and semantic representation of the language and methods employed for extracting these parameters. Semantics interpretation methods of natural language varies from language to language, as grammatical structure and morphological representation of one language may be different from another. One ancient Indian language, Sanskrit, has its own unique way of embedding syntactic information within words of relevance in a sentence. Sanskrit grammar is defined in 4000 rules by PaninI reveals the mechanism of adding suffixes to words according to its use in sentence. Through this article, a method of extracting meaningful information through suffixes and classifying the word into a defined semantic category is presented. The application of NN-based classification has improved the processing of text.

Suggested Citation

  • Smita Selot & Neeta Tripathi & A. S. Zadgaonkar, 2018. "Neural Network Model for Semantic Analysis of Sanskrit Text," International Journal of Natural Computing Research (IJNCR), IGI Global, vol. 7(1), pages 1-14, January.
  • Handle: RePEc:igg:jncr00:v:7:y:2018:i:1:p:1-14
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJNCR.2018010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jncr00:v:7:y:2018:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.