IDEAS home Printed from https://ideas.repec.org/a/igg/jncr00/v6y2017i1p1-16.html
   My bibliography  Save this article

Enhancement of “Technique for Order Preference by Similarity to Ideal Solution” Approach for Evaluating the Web Sources to Select as External Source for Web Warehousing

Author

Listed:
  • Hari Om Sharan Sinha

    (SC&SS, Jawaharlal Nehru University, New Delhi, India)

Abstract

The main concern of this paper is to evaluate the web sources, which are to be selected as external data sources for web warehousing. In order to identify the web sources, they are evaluated on the ground of their multiple features. For it, Multi Criteria Decision Making (MCDM) approach has been used. Here, among all the MCDM approach, the focus is on “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS) approach and proposing an enhancement in this method. The conventional TOPSIS approach uses Euclidean Distance to measure the similarity. Here, Jeffrey Divergence has been proposed to measure the similarity instead of Euclidean Distance which includes all the symmetric distances during computation. The Euclidean Distance only measures unidirectional distance whereas the Jeffrey Divergence includes multidirectional distances. Unidirectional distance includes only distance in one dimension but multidirectional distances includes differences, so more relevant in web sources evaluation. Experimental analysis for both the variations of TOPSIS approach have been conducted and the result shows the enhancement in the selection of web sources.

Suggested Citation

  • Hari Om Sharan Sinha, 2017. "Enhancement of “Technique for Order Preference by Similarity to Ideal Solution” Approach for Evaluating the Web Sources to Select as External Source for Web Warehousing," International Journal of Natural Computing Research (IJNCR), IGI Global, vol. 6(1), pages 1-16, January.
  • Handle: RePEc:igg:jncr00:v:6:y:2017:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJNCR.2017010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jncr00:v:6:y:2017:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.