IDEAS home Printed from https://ideas.repec.org/a/igg/jmmme0/v3y2013i3p57-75.html
   My bibliography  Save this article

Damage Identification of Multimember Structure using Improved Neural Networks

Author

Listed:
  • M. Rajendra

    (Mechanical Engineering Department, IIT Madras, Chennai, Tamil Nadu, India)

  • K. Shankar

    (Mechanical Engineering Department, IIT Madras, Chennai, Tamil Nadu, India)

Abstract

A novel two stage Improved Radial Basis Function (IRBF) neural network for the damage identification of a multimember structure in the frequency domain is presented. The improvement of the proposed IRBF network is carried out in two stages. Conventional RBF network is used in the first stage for preliminary damage prediction and in the second stage reduced search space moving technique is used to minimize the prediction error. The network is trained with fractional frequency change ratios (FFCs) and damage signature indices (DSIs) as effective input patterns and the corresponding damage severity values as output patterns. The patterns are searched at different damage levels by Latin hypercube sampling (LHS) technique. The performance of the novel IRBF method is compared with the conventional RBF and Genetic algorithm (GA) methods and it is found to be a good multiple member damage identification strategy in terms of accuracy and precision with less computational effort.

Suggested Citation

  • M. Rajendra & K. Shankar, 2013. "Damage Identification of Multimember Structure using Improved Neural Networks," International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), IGI Global, vol. 3(3), pages 57-75, July.
  • Handle: RePEc:igg:jmmme0:v:3:y:2013:i:3:p:57-75
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijmmme.2013070104
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jmmme0:v:3:y:2013:i:3:p:57-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.