IDEAS home Printed from https://ideas.repec.org/a/igg/jmmme0/v11y2021i4p1-25.html
   My bibliography  Save this article

Combining Response Surface Method and Metaheuristic Algorithms for Optimizing SPIF Process

Author

Listed:
  • Amr Ahmed Shaaban

    (Ain Shams University, Cairo, Egypt)

  • Omar Mahmoud Shehata

    (Ain Shams University, Cairo, Egypt)

Abstract

Recently, studies have focused on optimization as a method to reach the finest conditions for metal forming processes. This study tests various optimization techniques to determine the optimum conditions for single point incremental forming (SPIF). SPIF is a die-less forming process that depends on moving a tool along a path designed for a specific feature. As it involves various parameters, optimization based on experimental studies would be costly, hence a finite element model (FE-model) for the SPIF process is developed and validated through experimental results. In the second phase, statistical analyses based on the response surface method (RSM) are conducted. The optimum conditions are determined using the desirability optimization method, in addition to two metaheuristic optimization algorithms, namely genetic algorithm (GA) and particle swarm optimization (PSO). The results of all optimization techniques are compared to each other and a confirmation test using the FE-model is subsequently performed.

Suggested Citation

  • Amr Ahmed Shaaban & Omar Mahmoud Shehata, 2021. "Combining Response Surface Method and Metaheuristic Algorithms for Optimizing SPIF Process," International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), IGI Global, vol. 11(4), pages 1-25, October.
  • Handle: RePEc:igg:jmmme0:v:11:y:2021:i:4:p:1-25
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJMMME.2021100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jmmme0:v:11:y:2021:i:4:p:1-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.