Author
Listed:
- Hossein Shirazi
(Colorado State University, Colorado, USA)
- Kyle Haefner
(Colorado State University, Colorado, USA)
- Indrakshi Ray
(Colorado State University, Colorado, USA)
Abstract
Denizens of the Internet are under a barrage of phishing attacks of increasing frequency and sophistication. Emails accompanied by authentic looking websites are ensnaring users who, unwittingly, hand over their credentials compromising both their privacy and security. Methods such as the blacklisting of these phishing websites become untenable and cannot keep pace with the explosion of fake sites. Detection of nefarious websites must become automated and be able to adapt to this ever-evolving form of social engineering. There is an improved framework that was previously implemented called “Fresh-Phish”, for creating current machine-learning data for phishing websites. The improved framework uses a total of 28 different website features that query using python, then a large labeled dataset is built and analyze over several machine learning classifiers against this dataset to determine which is the most accurate. This modified framework improves the accuracy of modeling those features by using integer rather than binary values where possible. This article analyzes not just the accuracy of the technique, but also how long it takes to train the model.
Suggested Citation
Hossein Shirazi & Kyle Haefner & Indrakshi Ray, 2018.
"Improving Auto-Detection of Phishing Websites using Fresh-Phish Framework,"
International Journal of Multimedia Data Engineering and Management (IJMDEM), IGI Global, vol. 9(1), pages 1-14, January.
Handle:
RePEc:igg:jmdem0:v:9:y:2018:i:1:p:1-14
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jmdem0:v:9:y:2018:i:1:p:1-14. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.