IDEAS home Printed from https://ideas.repec.org/a/igg/jmdem0/v4y2013i1p1-20.html
   My bibliography  Save this article

Audio Classification and Retrieval Using Wavelets and Gaussian Mixture Models

Author

Listed:
  • Ching-Hua Chuan

    (School of Computing, University of North Florida, Jacksonville, FL, USA)

Abstract

This paper presents an audio classification and retrieval system using wavelets for extracting low-level acoustic features. The author performed multiple-level decomposition using discrete wavelet transform to extract acoustic features from audio recordings at different scales and times. The extracted features are then translated into a compact vector representation. Gaussian mixture models with expectation maximization algorithm are used to build models for audio classes and individual audio examples. The system is evaluated using three audio classification tasks: speech/music, male/female speech, and music genre. They also show how wavelets and Gaussian mixture models are used for class-based audio retrieval in two approaches: indexing using only wavelets versus indexing by Gaussian components. By evaluating the system through 10-fold cross-validation, the author shows the promising capability of wavelets and Gaussian mixture models for audio classification and retrieval. They also compare how parameters including frame size, wavelet level, Gaussian components, and sampling size affect performance in Gaussian models.

Suggested Citation

  • Ching-Hua Chuan, 2013. "Audio Classification and Retrieval Using Wavelets and Gaussian Mixture Models," International Journal of Multimedia Data Engineering and Management (IJMDEM), IGI Global, vol. 4(1), pages 1-20, January.
  • Handle: RePEc:igg:jmdem0:v:4:y:2013:i:1:p:1-20
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jmdem.2013010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jmdem0:v:4:y:2013:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.