IDEAS home Printed from https://ideas.repec.org/a/igg/jmdem0/v1y2010i1p37-54.html
   My bibliography  Save this article

Weighted Association Rule Mining for Video Semantic Detection

Author

Listed:
  • Lin Lin

    (University of Miami, USA)

  • Mei-Ling Shyu

    (University of Miami, USA)

Abstract

Semantic knowledge detection of multimedia content has become a very popular research topic in recent years. The association rule mining (ARM) technique has been shown to be an efficient and accurate approach for content-based multimedia retrieval and semantic concept detection in many applications. To further improve the performance of traditional association rule mining technique, a video semantic concept detection framework whose classifier is built upon a new weighted association rule mining (WARM) algorithm is proposed in this article. Our proposed WARM algorithm is able to capture the different significance degrees of the items (feature-value pairs) in generating the association rules for video semantic concept detection. Our proposed WARM-based framework first applies multiple correspondence analysis (MCA) to project the features and classes into a new principle component space and discover the correlation between feature-value pairs and classes. Next, it considers both correlation and percentage information as the measurement to weight the feature-value pairs and to generate the association rules. Finally, it performs classification by using these weighted association rules. To evaluate our WARM-based framework, we compare its performance of video semantic concept detection with several well-known classifiers using the benchmark data available from the 2007 and 2008 TRECVID projects. The results demonstrate that our WARM-based framework achieves promising performance and performs significantly better than those classifiers in the comparison.

Suggested Citation

  • Lin Lin & Mei-Ling Shyu, 2010. "Weighted Association Rule Mining for Video Semantic Detection," International Journal of Multimedia Data Engineering and Management (IJMDEM), IGI Global, vol. 1(1), pages 37-54, January.
  • Handle: RePEc:igg:jmdem0:v:1:y:2010:i:1:p:37-54
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jmdem.2010111203
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiman Tian & Shu-Ching Chen & Mei-Ling Shyu, 0. "Evolutionary Programming Based Deep Learning Feature Selection and Network Construction for Visual Data Classification," Information Systems Frontiers, Springer, vol. 0, pages 1-14.
    2. Haiman Tian & Shu-Ching Chen & Mei-Ling Shyu, 2020. "Evolutionary Programming Based Deep Learning Feature Selection and Network Construction for Visual Data Classification," Information Systems Frontiers, Springer, vol. 22(5), pages 1053-1066, October.
    3. Chao Chen & Mei-Ling Shyu & Shu-Ching Chen, 2016. "Weighted subspace modeling for semantic concept retrieval using gaussian mixture models," Information Systems Frontiers, Springer, vol. 18(5), pages 877-889, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jmdem0:v:1:y:2010:i:1:p:37-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.