IDEAS home Printed from https://ideas.repec.org/a/igg/jmdem0/v13y2022i1p1-20.html
   My bibliography  Save this article

Metamorphic Testing of Image Classification and Consistency Analysis Using Clustering

Author

Listed:
  • Hemanth Gudaparthi

    (University of Cincinnati, USA)

  • Prudhviraj Naidu

    (University of Cincinnati, USA)

  • Nan Niu

    (University of Cincinnati, USA)

Abstract

Testing deep learning systems requires expensive labeled data. In recent years, researchers began to leverage metamorphic testing to address this issue. However, metamorphic relations on image data remain poorly understood. To gain a deeper understanding of these metamorphic relations, we survey common image operations modeling covariate shift, manually classify and categorize the underlying metamorphic relations, and conduct experiments to validate our classifications. In our experiments, we train three popular convolutional neural network architectures on an image classification task. Next, we apply metamorphic operations on input test images and measure the change in classification accuracy and cross-entropy loss. A hierarchical clustering algorithm cluster these results and plots a dendrogram. We compare the groups from manual classification and the clusters from the algorithm to provide key insights. We find that Affine and Noise relations are consistent. Furthermore, we recommend metamorphic relationships to save time and better test deep learning systems in the future.

Suggested Citation

  • Hemanth Gudaparthi & Prudhviraj Naidu & Nan Niu, 2022. "Metamorphic Testing of Image Classification and Consistency Analysis Using Clustering," International Journal of Multimedia Data Engineering and Management (IJMDEM), IGI Global, vol. 13(1), pages 1-20, January.
  • Handle: RePEc:igg:jmdem0:v:13:y:2022:i:1:p:1-20
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJMDEM.304390
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jmdem0:v:13:y:2022:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.