IDEAS home Printed from https://ideas.repec.org/a/igg/jkbo00/v9y2019i4p1-20.html
   My bibliography  Save this article

Enhanced Twofold-LDA Model for Aspect Discovery and Sentiment Classification

Author

Listed:
  • Nicola Burns

    (Genesys, Frimley, UK)

  • Yaxin Bi

    (Ulster University, Antrim, UK)

  • Hui Wang

    (Ulster University, Antrim, UK)

  • Terry Anderson

    (Ulster University, Antrim, UK)

Abstract

There is a need to automatically classify information from online reviews. Customers want to know useful information about different aspects of a product or service and also the sentiment expressed towards each aspect. This article proposes an Enhanced Twofold-LDA model (Latent Dirichlet Allocation), in which one LDA is used for aspect assignment and another is used for sentiment classification, aiming to automatically determine aspect and sentiment. The enhanced model incorporates domain knowledge (i.e., seed words) to produce more focused topics and has the ability to handle two aspects in at the sentence level simultaneously. The experiment results show that the Enhanced Twofold-LDA model is able to produce topics more related to aspects in comparison to the state of arts method ASUM (Aspect and Sentiment Unification Model), whereas comparable with ASUM on sentiment classification performance.

Suggested Citation

  • Nicola Burns & Yaxin Bi & Hui Wang & Terry Anderson, 2019. "Enhanced Twofold-LDA Model for Aspect Discovery and Sentiment Classification," International Journal of Knowledge-Based Organizations (IJKBO), IGI Global, vol. 9(4), pages 1-20, October.
  • Handle: RePEc:igg:jkbo00:v:9:y:2019:i:4:p:1-20
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJKBO.2019100101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaxin Bi, 2022. "Sentiment classification in social media data by combining triplet belief functions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 968-991, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jkbo00:v:9:y:2019:i:4:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.