IDEAS home Printed from https://ideas.repec.org/a/igg/jkbo00/v10y2020i2p1-11.html
   My bibliography  Save this article

Machine Learning Crowdfunding

Author

Listed:
  • Evangelos Katsamakas

    (Gabelli School of Business, Fordham University, New York, USA)

  • Hao Sun

    (Gabelli School of Business, Fordham University, New York USA)

Abstract

Crowdfunding is a novel and important economic mechanism for funding projects and promoting innovation in the digital economy. This article explores most recent structured and unstructured data from a crowdfunding platform. It provides an in-depth exploration of the data using text analytics techniques, such as sentiment analysis and topic modeling. It uses novel natural language processing to represent project descriptions, and evaluates machine learning models, including neural network models, to predict project fundraising success. It discusses the findings of the performance evaluation, and summarizes lessons for crowdfunding platforms and their users.

Suggested Citation

  • Evangelos Katsamakas & Hao Sun, 2020. "Machine Learning Crowdfunding," International Journal of Knowledge-Based Organizations (IJKBO), IGI Global, vol. 10(2), pages 1-11, April.
  • Handle: RePEc:igg:jkbo00:v:10:y:2020:i:2:p:1-11
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJKBO.2020040101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jkbo00:v:10:y:2020:i:2:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.