IDEAS home Printed from https://ideas.repec.org/a/igg/jitwe0/v19y2024i1p1-16.html
   My bibliography  Save this article

Securities Quantitative Trading Strategy Based on Deep Learning of Industrial Internet of Things

Author

Listed:
  • Yi Tang

    (Chongqing Institute of Engineering, China)

  • Xiaoning Wang

    (Chongqing Institute of Engineering, China)

  • Wenyan Wang

    (Cangzhou Normal University, China)

Abstract

By combing the shortcomings of the current quantitative securities trading, a new deep reinforcement learning modeling method is proposed to improve the abstraction of state, action and reward function; on the basis of the traditional DQN algorithm, a deep reinforcement learning algorithm model of RB_DRL is proposed. By improving the network structure and connection mode, and redefining the loss function of the network, the improved model performs well in many groups of comparative experiments. A securities quantitative trading system based on deep reinforcement learning is designed, which organically combines models, strategies and data, visually displays the information to users in the form of web pages to facilitate users' use and seeks the trading rules of the financial market to provide investors with a more stable trading strategy. The research results have important practical value and research significance in the field of financial investment.

Suggested Citation

  • Yi Tang & Xiaoning Wang & Wenyan Wang, 2024. "Securities Quantitative Trading Strategy Based on Deep Learning of Industrial Internet of Things," International Journal of Information Technology and Web Engineering (IJITWE), IGI Global, vol. 19(1), pages 1-16, January.
  • Handle: RePEc:igg:jitwe0:v:19:y:2024:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJITWE.347880
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan Fang & Waichung Chung & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & Fan Wu, 2024. "Ascertaining price formation in cryptocurrency markets with machine learning," The European Journal of Finance, Taylor & Francis Journals, vol. 30(1), pages 78-100, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jitwe0:v:19:y:2024:i:1:p:1-16. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.