IDEAS home Printed from https://ideas.repec.org/a/igg/jitwe0/v13y2018i2p56-69.html
   My bibliography  Save this article

PowKMeans: A Hybrid Approach for Gray Sheep Users Detection and Their Recommendations

Author

Listed:
  • Honey Jindal

    (Department of Computer Science and Engineering, Jaypee Institute of Information Technology, Noida, India)

  • Shalini Agarwal

    (Department of Computer Science and Engineering, Jaypee Institute of Information Technology, Noida, India)

  • Neetu Sardana

    (Department of Computer Science and Engineering, Jaypee Institute of Information Technology, Noida, India)

Abstract

This article describes how recommender systems are software applications or web portals that generate personalized preferences using information filtering techniques, with a goal to support decision-making of the users. Collaborative-based techniques are often used to predict the unknown preferences of the user based upon his past preferences or the preferences of the similar users that have already been identified. A user which has a high correlation with any group of users is known as white user whereas the users which have less correlation with any group of users are known as gray-sheep users. The presence of gray-sheep users affects the accuracy of the model, and generates inaccurate predictions. To improve the prediction accuracy, it is important to differentiate graysheep users from white users. Experimental results show that PowKMeans is effective in improving the prediction accuracy by 4.62%. It has also shown reduction in Mean Absolute Error by 0.7757.

Suggested Citation

  • Honey Jindal & Shalini Agarwal & Neetu Sardana, 2018. "PowKMeans: A Hybrid Approach for Gray Sheep Users Detection and Their Recommendations," International Journal of Information Technology and Web Engineering (IJITWE), IGI Global, vol. 13(2), pages 56-69, April.
  • Handle: RePEc:igg:jitwe0:v:13:y:2018:i:2:p:56-69
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJITWE.2018040106
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahim Rashidi & Keyhan Khamforoosh & Amir Sheikhahmadi, 2022. "Proposing improved meta-heuristic algorithms for clustering and separating users in the recommender systems," Electronic Commerce Research, Springer, vol. 22(2), pages 623-648, June.
    2. Rashidi, Rahim & Khamforoosh, Keyhan & Sheikhahmadi, Amir, 2020. "An analytic approach to separate users by introducing new combinations of initial centers of clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jitwe0:v:13:y:2018:i:2:p:56-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.