IDEAS home Printed from https://ideas.repec.org/a/igg/jissc0/v12y2021i2p1-15.html
   My bibliography  Save this article

Sentiment Analysis Using Machine Learning Algorithms and Text Mining to Detect Symptoms of Mental Difficulties Over Social Media

Author

Listed:
  • Hadj Ahmed Bouarara

    (GeCoDe Laboratory, Algeria)

Abstract

A recent British study of people between the ages of 14 and 35 has shown that social media has a negative impact on mental health. The purpose of the paper is to detect people with mental disorders' behavior in social media in order to help Twitter users in overcoming their mental health problems such as anxiety, phobia, depression, paranoia, etc. For this, the author used text mining and machine learning algorithms (naïve Bayes, k-nearest neighbours) to analyse tweets. The obtained results were validated using different evaluation measures such as f-measure, recall, precision, entropy, etc.

Suggested Citation

  • Hadj Ahmed Bouarara, 2021. "Sentiment Analysis Using Machine Learning Algorithms and Text Mining to Detect Symptoms of Mental Difficulties Over Social Media," International Journal of Information Systems and Social Change (IJISSC), IGI Global, vol. 12(2), pages 1-15, April.
  • Handle: RePEc:igg:jissc0:v:12:y:2021:i:2:p:1-15
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISSC.2021040101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jissc0:v:12:y:2021:i:2:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.