Author
Listed:
- Mohammad M. Masud
(The University of Texas at Dallas, USA)
- Latifur Khan
(The University of Texas at Dallas, USA)
- Bhavani Thuraisingham
(The University of Texas at Dallas, USA)
Abstract
This work applies data mining techniques to detect e-mail worms. E-mail messages contain a number of different features such as the total number of words in message body/subject, presence/absence of binary attachments, type of attachments, and so on. The goal is to obtain an efficient classification model based on these features. The solution consists of several steps. First, the number of features is reduced using two different approaches: feature-selection and dimension-reduction. This step is necessary to reduce noise and redundancy from the data. The feature-selection technique is called Two-phase Selection (TPS), which is a novel combination of decision tree and greedy selection algorithm. The dimension-reduction is performed by Principal Component Analysis. Second, the reduced data is used to train a classifier. Different classification techniques have been used, such as Support Vector Machine (SVM), Naïve Bayes, and their combination. Finally, the trained classifiers are tested on a dataset containing both known and unknown types of worms. These results have been compared with published results. It is found that the proposed TPS selection along with SVM classification achieves the best accuracy in detecting both known and unknown types of worms.
Suggested Citation
Mohammad M. Masud & Latifur Khan & Bhavani Thuraisingham, 2007.
"E-Mail Worm Detection Using Data Mining,"
International Journal of Information Security and Privacy (IJISP), IGI Global, vol. 1(4), pages 47-61, October.
Handle:
RePEc:igg:jisp00:v:1:y:2007:i:4:p:47-61
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jisp00:v:1:y:2007:i:4:p:47-61. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.