IDEAS home Printed from https://ideas.repec.org/a/igg/jisp00/v17y2023i1p1-18.html
   My bibliography  Save this article

A Novel CNN-LSTM Fusion-Based Intrusion Detection Method for Industrial Internet

Author

Listed:
  • Jinhai Song

    (Henan University of Science and Technology, China)

  • Zhiyong Zhang

    (Henan University of Science and Technology, China)

  • Kejing Zhao

    (Henan University of Science and Technology, China)

  • Qinhai Xue

    (Henan University of Science and Technology, China)

  • Brij B. Gupta

    (Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan, & Lebanese American University, Beirut, Lebanon, & Center for Interdisciplinary Research at University of Petroleum and Energy Studies (UPES), Dehradun, India, & UCRD, Chandigarh University, Chandigarh, India)

Abstract

Industrial internet security incidents occur frequently, and it is very important to accurately and effectively detect industrial internet attacks. In this paper, a novel CNN-LSTM fusion model-based method is proposed to detect malicious behavior under industrial internet security. Firstly, the data distribution is analyzed with the help of kernel density estimation, and the Pearson correlation coefficient is used to select the strong correlation feature as the model input. The one-dimensional convolutional neural network and the long short-term memory network respectively extract the spatial sequence features of the data and then use the softmax function to complete the classification task. In order to verify the effectiveness of the model, it is evaluated on the NSL-KDD dataset and the GAS dataset, and experiments show that the model has a significant performance improvement over a single model. In the detection of industrial network traffic data, the accuracy rate of 97.09% and the recall rate of 90.84% are achieved.

Suggested Citation

  • Jinhai Song & Zhiyong Zhang & Kejing Zhao & Qinhai Xue & Brij B. Gupta, 2023. "A Novel CNN-LSTM Fusion-Based Intrusion Detection Method for Industrial Internet," International Journal of Information Security and Privacy (IJISP), IGI Global, vol. 17(1), pages 1-18, January.
  • Handle: RePEc:igg:jisp00:v:17:y:2023:i:1:p:1-18
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISP.325232
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Turki Ali Alghamdi, 2020. "Energy efficient protocol in wireless sensor network: optimized cluster head selection model," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(3), pages 331-345, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaha Al-Otaibi & Venkatesan Cherappa & Thamaraimanalan Thangarajan & Ramalingam Shanmugam & Prithiviraj Ananth & Sivaramakrishnan Arulswamy, 2023. "Hybrid K-Medoids with Energy-Efficient Sunflower Optimization Algorithm for Wireless Sensor Networks," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    2. Han-Dong Jia & Shu-Chuan Chu & Pei Hu & LingPing Kong & XiaoPeng Wang & Václav Snášel & Tong-Bang Jiang & Jeng-Shyang Pan, 2022. "Hybrid algorithm optimization for coverage problem in wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(1), pages 105-121, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jisp00:v:17:y:2023:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.