IDEAS home Printed from https://ideas.repec.org/a/igg/jisp00/v15y2021i3p1-18.html
   My bibliography  Save this article

DDoS Attack Simulation and Machine Learning-Based Detection Approach in Internet of Things Experimental Environment

Author

Listed:
  • Hongsong Chen

    (University of Science and Technology, Beijing, China)

  • Caixia Meng

    (Railway Police College, China)

  • Jingjiu Chen

    (University of Science and Technology, Beijing, China)

Abstract

Aiming at the problem of DDoS attack detection in internet of things (IoT) environment, statistical and machine-learning algorithms are proposed to model and analyze the network traffic of DDoS attack. Docker-based virtualization platform is designed and configured to collect IoT network traffic data. Then the packet-level, flow-level, and second-level network traffic datasets are generated, and the importance of features in different traffic datasets are sorted. By SKlearn and TensorFlow machine-learning software framework, different machine learning algorithms are researched and compared. In packet-level DDoS attack detection, KNN algorithm achieves the best results; the accuracy is 92.8%. In flow-level DDoS attack detection, the voting algorithm achieves the best results; the accuracy is 99.8%. In second-level DDoS attack detection, the RNN algorithm behaves best results; the accuracy is 97.1%. The DDoS attack detection method combined with statistical analysis and machine-learning can effectively detect large-scale DDoS attacks on the internet of things simulation experimental environment.

Suggested Citation

  • Hongsong Chen & Caixia Meng & Jingjiu Chen, 2021. "DDoS Attack Simulation and Machine Learning-Based Detection Approach in Internet of Things Experimental Environment," International Journal of Information Security and Privacy (IJISP), IGI Global, vol. 15(3), pages 1-18, July.
  • Handle: RePEc:igg:jisp00:v:15:y:2021:i:3:p:1-18
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISP.2021070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jisp00:v:15:y:2021:i:3:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.