IDEAS home Printed from https://ideas.repec.org/a/igg/jismd0/v8y2017i2p92-111.html
   My bibliography  Save this article

Identifying the Opinion Orientation of Online Product Reviews at Feature Level: A Pruning Approach

Author

Listed:
  • Nilanshi Chauhan

    (National Institute of Technology, Hamirpur, India)

  • Pardeep Singh

    (National Institute of Technology, Hamirpur, India)

Abstract

This article describes how e-commerce has become so vast that almost every product and service can be purchased online, to be delivered at our doorsteps. This has led to a striking increase in the number of online customers. In an attempt to make the online shopping more appealing and transparent to the online customers, the e-retailers allow their customers to express their opinion about the purchased products and services. Recently, analysis of such online reviews has become an active topic of research. This is because it is of immense concern to various stakeholders vs. online merchants, potential customers and the manufacturers of the particular product or service providers. The present article addresses the problem of summarization of such opinions expressed online and aims to create an organized feature-based summary as a solution. The proposed system depends on the frequency of occurrences of the potential features. A number of pruning methods are applied in order to obtain the final feature set and sentiment analysis has been done for each such feature.

Suggested Citation

  • Nilanshi Chauhan & Pardeep Singh, 2017. "Identifying the Opinion Orientation of Online Product Reviews at Feature Level: A Pruning Approach," International Journal of Information System Modeling and Design (IJISMD), IGI Global, vol. 8(2), pages 92-111, April.
  • Handle: RePEc:igg:jismd0:v:8:y:2017:i:2:p:92-111
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISMD.2017040106
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shugang Li & Fang Liu & Yuqi Zhang & Boyi Zhu & He Zhu & Zhaoxu Yu, 2022. "Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review," Mathematics, MDPI, vol. 10(19), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jismd0:v:8:y:2017:i:2:p:92-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.