IDEAS home Printed from https://ideas.repec.org/a/igg/jismd0/v15y2024i1p1-13.html
   My bibliography  Save this article

Analysis of Low-Carbon, Energy-Saving, and Emission Reduction Models Based on Rail Transit

Author

Listed:
  • Jiaqi Sun

    (University of Queensland, Australia)

  • Van Vang Le

    (Ho Chi Minh City University of Transport, Vietnam)

Abstract

It is difficult to define scientific applicability conditions when dealing with different evaluation objects and scope. This article is based on multi-source big data such as the Automatic Fare Collection System (AFC) of urban rail transit, comprehensively considering the multidimensional impact of urban rail transit on the urban transportation system, and conducting a quantitative analysis of the energy-saving and emission reduction effects of urban rail transit. This study adopts a traffic emission model based on specific driving forces and a traffic demand prediction model, coupling the model and data to establish an urban rail transit energy conservation and emission reduction evaluation model suitable for different urban rail transit setting scenarios. Finally, this study selected six districts in Beijing as model application cases and used a combination of RP (display preference) survey and SP (state preference) survey to complete model parameter calibration for application cases.

Suggested Citation

  • Jiaqi Sun & Van Vang Le, 2024. "Analysis of Low-Carbon, Energy-Saving, and Emission Reduction Models Based on Rail Transit," International Journal of Information System Modeling and Design (IJISMD), IGI Global, vol. 15(1), pages 1-13, January.
  • Handle: RePEc:igg:jismd0:v:15:y:2024:i:1:p:1-13
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISMD.355708
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jismd0:v:15:y:2024:i:1:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.