IDEAS home Printed from https://ideas.repec.org/a/igg/jismd0/v13y2022i3p1-11.html
   My bibliography  Save this article

AI for Health-Related Data Modeling: DCN Application Analysis

Author

Listed:
  • Na Cheng

    (Jilin Institute of Physical Education, China)

Abstract

Data modeling of health-related data from Data Center (DC) has positive effects for health monitoring, disease prevention, and healthcare research. However, health-related data has the characteristics of huge, high-dimensional, and non-normalized, which are not beneficial to direct analysis, so data needs to be preprocessed before data modeling. This paper focuses on the features of health-related data, and outlier detection during data preprocessing is studied. Meanwhile, we propose an improved algorithm for health-related data based outlier detection. The experimental results reveal that the proposed outlier detection algorithm has a smaller running time, and more outliers are detected compared to three baselines. In addition, local importance based random forest feature selection algorithm is proposed to measure the importance of each feature. The experimental results indicate that the proposed algorithm can select optimal feature subset to apply health-related data.

Suggested Citation

  • Na Cheng, 2022. "AI for Health-Related Data Modeling: DCN Application Analysis," International Journal of Information System Modeling and Design (IJISMD), IGI Global, vol. 13(3), pages 1-11, July.
  • Handle: RePEc:igg:jismd0:v:13:y:2022:i:3:p:1-11
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISMD.300780
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jismd0:v:13:y:2022:i:3:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.