IDEAS home Printed from https://ideas.repec.org/a/igg/jismd0/v13y2022i1p1-14.html
   My bibliography  Save this article

Multi-Class Plant Leaf Disease Detection Using a Deep Convolutional Neural Network

Author

Listed:
  • Shriya Jadhav

    (Vellore Institute of Technology, India)

  • Anisha M. Lal

    (Vellore Institute of Technology, India)

Abstract

Traditional machine learning methods of plant leaf disease detection lack successful performances due to poor feature representation and correlation. This paper presents a novel methodology for automatic plant leaf disease detection using cascaded deep convolutional neural network (CDCNN) which focusses on increasing the feature representation and correlation factors. It provides distinctive features that gives low intra-class variability and higher inter-class variability. CDCNN were performed on a plant-village leaf disease database which consists of 13 classes of tomato, potato, and pepper bell plant diseases; DCNN model performs better with an overall accuracy, recall, and precision of 98.50%, 0.98, and 0.97 respectively. Additionally, performance of the proposed algorithm is evaluated on real time cotton leaf database for bacterial blight, leaf miner, and spider mite diseases detection and provides 99.00% accuracy. The proposed DCNN outperforms well compared to traditional machine learning and deep learning models and is able to detect the diseases present in the leaves of the plant.

Suggested Citation

  • Shriya Jadhav & Anisha M. Lal, 2022. "Multi-Class Plant Leaf Disease Detection Using a Deep Convolutional Neural Network," International Journal of Information System Modeling and Design (IJISMD), IGI Global, vol. 13(1), pages 1-14, January.
  • Handle: RePEc:igg:jismd0:v:13:y:2022:i:1:p:1-14
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISMD.315126
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jismd0:v:13:y:2022:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.