IDEAS home Printed from https://ideas.repec.org/a/igg/jirr00/v13y2023i1p1-22.html
   My bibliography  Save this article

Promoting Document Relevance Using Query Term Proximity for Exploratory Search

Author

Listed:
  • Vikram Singh

    (National Institute of Technology, Kurukshetra, India)

Abstract

In the information retrieval system, relevance manifestation is pivotal and regularly based on document-term statistics, i.e., term frequency (tf), inverse document frequency (idf), etc. Query term proximity (QTP) within matched documents is mostly under-explored. In this article, a novel information retrieval framework is proposed to promote the documents among all relevant retrieved ones. The relevance estimation is a weighted combination of document statistics and query term statistics, and term-term proximity is simply aggregates of diverse user preferences aspects in query formation, thus adapted into the framework with conventional relevance measures. Intuitively, QTP is exploited to promote the documents for balanced exploitation-exploration, and eventually navigate a search towards goals. The evaluation asserts the usability of QTP measures to balance several seeking tradeoffs, e.g., relevance, novelty, result diversification (coverage, topicality), and overall retrieval. The assessment of user search trails indicates significant growth in a learning outcome (due to novelty).

Suggested Citation

  • Vikram Singh, 2023. "Promoting Document Relevance Using Query Term Proximity for Exploratory Search," International Journal of Information Retrieval Research (IJIRR), IGI Global, vol. 13(1), pages 1-22, January.
  • Handle: RePEc:igg:jirr00:v:13:y:2023:i:1:p:1-22
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIRR.325072
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jirr00:v:13:y:2023:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.