IDEAS home Printed from https://ideas.repec.org/a/igg/jirr00/v12y2022i1p1-18.html
   My bibliography  Save this article

Clustering of Relevant Documents Based on Findability Effort in Information Retrieval

Author

Listed:
  • Prabha Rajagopal

    (Monash University, Malaysia)

  • Taoufik Aghris

    (EMINES-School of Industrial Management, Mohammed VI Polytechnic University, Morocco)

  • Fatima-Ezzahra Fettah

    (EMINES-School of Industrial Management, Mohammed VI Polytechnic University, Morocco)

  • Sri Devi Ravana

    (University of Malaya, Malaysia)

Abstract

A user expresses their information need in the form of a query on an information retrieval (IR) system that retrieves a set of articles related to the query. The performance of the retrieval system is measured based on the retrieved content to the query, judged by expert topic assessors who are trained to find this relevant information. However, real users do not always succeed in finding relevant information in the retrieved list due to the amount of time and effort needed. This paper aims 1) to utilize the findability features to determine the amount of effort needed to find information from relevant documents using the machine learning approach and 2) to demonstrate changes in IR systems' performance when the effort is included in the evaluation. This study uses a natural language processing technique and unsupervised clustering approach to group documents by the amount of effort needed. The results show that relevant documents can be clustered using the k-means clustering approach, and the retrieval system performance varies by 23%, on average.

Suggested Citation

  • Prabha Rajagopal & Taoufik Aghris & Fatima-Ezzahra Fettah & Sri Devi Ravana, 2022. "Clustering of Relevant Documents Based on Findability Effort in Information Retrieval," International Journal of Information Retrieval Research (IJIRR), IGI Global, vol. 12(1), pages 1-18, January.
  • Handle: RePEc:igg:jirr00:v:12:y:2022:i:1:p:1-18
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIRR.315764
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanwei Xu & Lianyong Qi & Wanchun Dou & Jiguo Yu, 2017. "Privacy-Preserving and Scalable Service Recommendation Based on SimHash in a Distributed Cloud Environment," Complexity, Hindawi, vol. 2017, pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoyi Li & Fei Xiong & Ximeng Wang & Hongshu Chen & Xi Xiong, 2019. "Topological Influence-Aware Recommendation on Social Networks," Complexity, Hindawi, vol. 2019, pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jirr00:v:12:y:2022:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.