IDEAS home Printed from https://ideas.repec.org/a/igg/jiit00/v3y2007i4p1-24.html
   My bibliography  Save this article

Towards Stable Model Bases for Causal Strategic Decision Support Systems

Author

Listed:
  • Christian Hillbrand

    (University of Liechtenstein, Liechtenstein)

Abstract

Most decision support systems (DSS) based on causal models fail to analyze the empirical validity of the underlying cause-and-effect hypotheses, but instead concentrate on numerous analysis techniques within the method base. However, the soundness of these cause-and-effect-relations as well as the knowledge of the approximate shape of the functional dependencies underlying these associations turns out to be the biggest issue for the quality of the results of decision supporting procedures. Therefore this article strives towards an approach to prove the causality of nomologic cause-and-effect-hypotheses by empirical evidence as a prerequisite for the approximation of the mostly unknown causal functions. Since the latter very often show non-linear influences, it is necessary to employ universal function approximators for this purpose: consequently the proposed approach adopts artificial neural networks (ANN) as an inductive method to learn a calculational model of cause-and-effect functions from empirical time series.

Suggested Citation

  • Christian Hillbrand, 2007. "Towards Stable Model Bases for Causal Strategic Decision Support Systems," International Journal of Intelligent Information Technologies (IJIIT), IGI Global, vol. 3(4), pages 1-24, October.
  • Handle: RePEc:igg:jiit00:v:3:y:2007:i:4:p:1-24
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jiit.2007100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jiit00:v:3:y:2007:i:4:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.