IDEAS home Printed from https://ideas.repec.org/a/igg/jiit00/v19y2023i1p1-20.html
   My bibliography  Save this article

ResNet and PCA-Based Deep Learning Scheme for Efficient Face Recognition

Author

Listed:
  • Rajendra Kumar Dwivedi

    (Madan Mohan Malaviya University of Technology, India)

  • Devesh Kumar

    (Babasaheb Bhimrao Ambedkar University, India)

Abstract

Face recognition is an emerging field of research in recent days. With the rise of deep learning, face recognition has become efficient and precise, creating new milestones. The performance, accuracy, and computational time of the existing schemes can be enhanced by devising a new scheme. In this context, a multiclass classification framework for face recognition using residual network (ResNet) and principal component analysis (PCA) schemes of deep learning with Dlib library is proposed in this paper. The proposed framework produces face recognition accuracy of 99.6% and a reduction of computational time with 68.03% using principal component analysis.

Suggested Citation

  • Rajendra Kumar Dwivedi & Devesh Kumar, 2023. "ResNet and PCA-Based Deep Learning Scheme for Efficient Face Recognition," International Journal of Intelligent Information Technologies (IJIIT), IGI Global, vol. 19(1), pages 1-20, January.
  • Handle: RePEc:igg:jiit00:v:19:y:2023:i:1:p:1-20
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIIT.329957
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jiit00:v:19:y:2023:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.