IDEAS home Printed from https://ideas.repec.org/a/igg/jiit00/v19y2023i1p1-16.html
   My bibliography  Save this article

A Deep Learning Approach for Loan Default Prediction Using Imbalanced Dataset

Author

Listed:
  • Ebenezer Owusu

    (University of Ghana, Ghana)

  • Richard Quainoo

    (University of Ghana, Ghana)

  • Solomon Mensah

    (University of Ghana, Ghana)

  • Justice Kwame Appati

    (University of Ghana, Ghana)

Abstract

Lending institutions face key challenges in making accurate predictions of loan defaults. Large sums of money given as loans are defaulted and this causes a substantial loss in business. This study addresses loan default in online peer-to-peer lending activities. Data for the study was obtained from the online lending club on the Kaggle platform. The loan status was chosen as the dependent variable and was classified discretely into “default” and “fully paid” loans. The dataset is preprocessed to eliminate all irrelevant instances. Due to the imbalanced nature of the dataset, the adaptive synthetic (ADASYN) oversampling algorithm is used to balance the data by oversampling the minority class with synthetic data instances. Deep neural network (DNN) is used for prediction. A prediction accuracy of 94.1% is realized and this emerged as the highest score from several trials with variations in batch sizes and epochs. The result of the study clearly shows that the proposed procedure is very promising.

Suggested Citation

  • Ebenezer Owusu & Richard Quainoo & Solomon Mensah & Justice Kwame Appati, 2023. "A Deep Learning Approach for Loan Default Prediction Using Imbalanced Dataset," International Journal of Intelligent Information Technologies (IJIIT), IGI Global, vol. 19(1), pages 1-16, January.
  • Handle: RePEc:igg:jiit00:v:19:y:2023:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIIT.318672
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jiit00:v:19:y:2023:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.