IDEAS home Printed from https://ideas.repec.org/a/igg/jiit00/v17y2021i1p1-15.html
   My bibliography  Save this article

Fingerprint Presentation Attack Detection Using Transfer Learning Approach

Author

Listed:
  • Rajneesh Rani

    (National Institute of Technology, Jalandhar, India)

  • Harpreet Singh

    (National Institute of Technology, Jalandhar, India)

Abstract

In this busy world, biometric authentication methods are serving as fast authentication means. But with growing dependencies on these systems, attackers have tried to exploit these systems through various attacks; thus, there is a strong need to protect authentication systems. Many software and hardware methods have been proposed in the past to make existing authentication systems more robust. Liveness detection/presentation attack detection is one such method that provides protection against malicious agents by detecting fake samples of biometric traits. This paper has worked on fingerprint liveness detection/presentation attack detection using transfer learning for which the authors have used a pre-trained NASNetMobile model. The experiments are performed on publicly available liveness datasets LivDet 2011 and LivDet 2013 and have obtained good results as compared to state of art techniques in terms of ACE(average classification error).

Suggested Citation

  • Rajneesh Rani & Harpreet Singh, 2021. "Fingerprint Presentation Attack Detection Using Transfer Learning Approach," International Journal of Intelligent Information Technologies (IJIIT), IGI Global, vol. 17(1), pages 1-15, January.
  • Handle: RePEc:igg:jiit00:v:17:y:2021:i:1:p:1-15
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIIT.2021010104
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jiit00:v:17:y:2021:i:1:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.