IDEAS home Printed from https://ideas.repec.org/a/igg/jiit00/v12y2016i2p53-69.html
   My bibliography  Save this article

SWRLx: A New Formalism for Hybrid Ontology Reasoning

Author

Listed:
  • Souad Bouaicha

    (University of Constantine 2 - Abdelhamid Mehri, Constantine, Algeria)

  • Zizette Boufaida

    (University of Constantine 2 - Abdelhamid Mehri, Constantine, Algeria)

Abstract

Although OWL (Web Ontology Language) and SWRL (Semantic Web Rule Language) add considerable expressiveness to the Semantic Web, they do have expressive limitations. For some reasoning problems, it is necessary to modify existing knowledge in an ontology. This kind of problem cannot be fully resolved by OWL and SWRL, as they only support monotonic inference. In this paper, the authors propose SWRLx (Extended Semantic Web Rule Language) as an extension to the SWRL rules. The set of rules obtained with SWRLx are posted to the Jess engine using rewrite meta-rules. The reason for this combination is that it allows the inference of new knowledge and storing it in the knowledge base. The authors propose a formalism for SWRLx along with its implementation through an adaptation of different object-oriented techniques. The Jess rule engine is used to transform these techniques to the Jess model. The authors include a demonstration that demonstrates the importance of this kind of reasoning. In order to verify their proposal, they use a case study inherent to interpretation of a preventive medical check-up.

Suggested Citation

  • Souad Bouaicha & Zizette Boufaida, 2016. "SWRLx: A New Formalism for Hybrid Ontology Reasoning," International Journal of Intelligent Information Technologies (IJIIT), IGI Global, vol. 12(2), pages 53-69, April.
  • Handle: RePEc:igg:jiit00:v:12:y:2016:i:2:p:53-69
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIIT.2016040104
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Du & Hengqing Jing & Kim-Kwang Raymond Choo & Vijayan Sugumaran & Daniel Castro-Lacouture, 2020. "An Ontology and Multi-Agent Based Decision Support Framework for Prefabricated Component Supply Chain," Information Systems Frontiers, Springer, vol. 22(6), pages 1467-1485, December.
    2. Juan Du & Hengqing Jing & Kim-Kwang Raymond Choo & Vijayan Sugumaran & Daniel Castro-Lacouture, 0. "An Ontology and Multi-Agent Based Decision Support Framework for Prefabricated Component Supply Chain," Information Systems Frontiers, Springer, vol. 0, pages 1-19.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jiit00:v:12:y:2016:i:2:p:53-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.