IDEAS home Printed from https://ideas.repec.org/a/igg/jiit00/v10y2014i4p51-69.html
   My bibliography  Save this article

Fall Detection with Part-Based Approach for Indoor Environment

Author

Listed:
  • A. Annis Fathima

    (AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India)

  • V. Vaidehi

    (AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India)

  • K. Selvaraj

    (AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India)

Abstract

In the current scenario, majority of the aged people want to lead independent life, and most of them prefer living at their own home. According to recent case studies, the major cause of casualty among elder people has been due to the accidental falls. Hence, it is eminent to have a fall detection monitoring system at home. The prevailing method for fall detection uses accelerometers to distinguish fall from other day to day activities, these results are more erroneous. In this paper, vision based “Fall detection with part-based approach (FDP)” is proposed to give accurate information about the person activities in the indoor. The proposed scheme uses background subtraction in association with aspect ratio and inclination angle to detect the fall. Moreover, the proposed approach predicts the fall even if the person is occluded by other objects or under self-occluded condition. To detect the person even if only partly visible and occluded by other non-moving objects, part based approach is adapted. To train the system for detection purpose, Cascaded structure of Haar-rectangular features with joint-boosting classifier is utilized. The detection efficiency is measured by precision, recall and accuracy parameters.

Suggested Citation

  • A. Annis Fathima & V. Vaidehi & K. Selvaraj, 2014. "Fall Detection with Part-Based Approach for Indoor Environment," International Journal of Intelligent Information Technologies (IJIIT), IGI Global, vol. 10(4), pages 51-69, October.
  • Handle: RePEc:igg:jiit00:v:10:y:2014:i:4:p:51-69
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijiit.2014100104
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. P. Faustina Joan & S. Valli, 0. "An enhanced text detection technique for the visually impaired to read text," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    2. S. P. Faustina Joan & S. Valli, 2017. "An enhanced text detection technique for the visually impaired to read text," Information Systems Frontiers, Springer, vol. 19(5), pages 1039-1056, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jiit00:v:10:y:2014:i:4:p:51-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.