IDEAS home Printed from https://ideas.repec.org/a/igg/jhisi0/v16y2021i4p1-30.html
   My bibliography  Save this article

Deep Learning Approach for Voice Pathology Detection and Classification

Author

Listed:
  • Vikas Mittal

    (National Institute of Technology, Kurukshetra, India)

  • R. K. Sharma

    (National Institute of Technology, Kurukshetra, India)

Abstract

A non-invasive cum robust voice pathology detection and classification architecture is proposed in the current manuscript. In place of the conventional feature-based machine learning techniques, a new architecture is proposed herein which initially performs deep learning-based filtering of the input voice signal, followed by a decision-level fusion of deep learning and a non-parametric learner. The efficacy of the proposed technique is verified by performing a comparative study with very recent work on the same dataset but based on different training algorithms.The proposed architecture has five different stages.The results are recorded in terms of nine (9) different classification score indices which are – mean average Precision, sensitivity, specificity, F1 score, accuracy, error, false-positive rate, Matthews Correlation Coefficient, and the Cohen’s Kappa index. The experimental results have shown that the use of machine learning classifier can get at most 96.12% accuracy, while the proposed technique achieved the highest accuracy of 99.14% in comparison to other techniques.

Suggested Citation

  • Vikas Mittal & R. K. Sharma, 2021. "Deep Learning Approach for Voice Pathology Detection and Classification," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-30, October.
  • Handle: RePEc:igg:jhisi0:v:16:y:2021:i:4:p:1-30
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJHISI.20211001.oa28
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jhisi0:v:16:y:2021:i:4:p:1-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.