IDEAS home Printed from https://ideas.repec.org/a/igg/jhisi0/v13y2018i4p1-14.html
   My bibliography  Save this article

A Unified Feature Selection Model for High Dimensional Clinical Data Using Mutated Binary Particle Swarm Optimization and Genetic Algorithm

Author

Listed:
  • Thendral Puyalnithi

    (Vellore Institute of Technology(VIT), Vellore, India)

  • Madhuviswanatham Vankadara

    (Vellore Institute of Technology(VIT), Vellore, India)

Abstract

This article contends that feature selection is an important pre-processing step in case the data set is huge in size with many features. Once there are many features, then the probability of existence of noisy features is high which might bring down the efficiency of classifiers created out of that. Since the clinical data sets naturally having very large number of features, the necessity of reducing the features is imminent to get good classifier accuracy. Nowadays, there has been an increase in the use of evolutionary algorithms in optimization in feature selection methods due to the high success rate. A hybrid algorithm which uses a modified binary particle swarm optimization called mutated binary particle swarm optimization and binary genetic algorithm is proposed in this article which enhanced the exploration and exploitation capability and it has been a verified with proposed parameter called trade off factor through which the proposed method is compared with other methods and the result shows the improved efficiency of the proposed method over other methods.

Suggested Citation

  • Thendral Puyalnithi & Madhuviswanatham Vankadara, 2018. "A Unified Feature Selection Model for High Dimensional Clinical Data Using Mutated Binary Particle Swarm Optimization and Genetic Algorithm," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 13(4), pages 1-14, October.
  • Handle: RePEc:igg:jhisi0:v:13:y:2018:i:4:p:1-14
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJHISI.2018100101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priti Bansal & Sumit Kumar & Ritesh Srivastava & Saksham Agarwal, 2021. "Using Transfer Learning and Hierarchical Classifier to Diagnose Melanoma From Dermoscopic Images," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(2), pages 73-86, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jhisi0:v:13:y:2018:i:4:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.