IDEAS home Printed from https://ideas.repec.org/a/igg/jgee00/v1y2010i2p24-37.html
   My bibliography  Save this article

Dynamic Tensile Test of Coal, Shale and Sandstone Using Split Hopkinson Pressure Bar: A Tool for Blast and Impact Assessment

Author

Listed:
  • Kaiwen Xia

    (University of Toronto, Canada)

  • Sheng Huang

    (University of Toronto, Canada)

  • Ajay Kumar Jha

    (Indian Institute of Technology, India)

Abstract

The dynamic tensile strength plays a pivotal role in rock fragmentation affecting the overall economics under the present ‘Mine to Mill Concept’. In this paper, a modified SHPB technique and Brazilian test method is presented to test the dynamic tensile strength of coal, shale and sandstone rock samples collected from three opencast mines of Coal India Limited and is compared with the static strength value. The dynamic tensile strength of coal and rock is much higher than static strength and tensile strength of coal and rock samples increase with loading rate. The result shows that the dynamic strength of the coal sample is 1.5 times higher than static strength and the dynamic strength of the sandstone sample is 3 times higher than the static strength.

Suggested Citation

  • Kaiwen Xia & Sheng Huang & Ajay Kumar Jha, 2010. "Dynamic Tensile Test of Coal, Shale and Sandstone Using Split Hopkinson Pressure Bar: A Tool for Blast and Impact Assessment," International Journal of Geotechnical Earthquake Engineering (IJGEE), IGI Global, vol. 1(2), pages 24-37, July.
  • Handle: RePEc:igg:jgee00:v:1:y:2010:i:2:p:24-37
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jgee.2010070103
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianlei Zhu & Qing Li & Guihua Wei & Shizheng Fang, 2020. "Dynamic Tensile Strength of Dry and Saturated Hard Coal under Impact Loading," Energies, MDPI, vol. 13(5), pages 1-14, March.
    2. Zhenhua Yang & Chaojun Fan & Tianwei Lan & Sheng Li & Guifeng Wang & Mingkun Luo & Hongwei Zhang, 2019. "Dynamic Mechanical and Microstructural Properties of Outburst-Prone Coal Based on Compressive SHPB Tests," Energies, MDPI, vol. 12(22), pages 1-16, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jgee00:v:1:y:2010:i:2:p:24-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.