IDEAS home Printed from https://ideas.repec.org/a/igg/jfsa00/v1y2011i1p1-16.html
   My bibliography  Save this article

Fuzzy C-Means in High Dimensional Spaces

Author

Listed:
  • Roland Winkler

    (German Aerospace Center, Germany)

  • Frank Klawonn

    (Ostfalia University, Germany)

  • Rudolf Kruse

    (Otto-von-Guericke University, Germany)

Abstract

High dimensions have a devastating effect on the FCM algorithm and similar algorithms. One effect is that the prototypes run into the centre of gravity of the entire data set. The objective function must have a local minimum in the centre of gravity that causes FCM’s behaviour. In this paper, examine this problem. This paper answers the following questions: How many dimensions are necessary to cause an ill behaviour of FCM? How does the number of prototypes influence the behaviour? Why has the objective function a local minimum in the centre of gravity? How must FCM be initialised to avoid the local minima in the centre of gravity? To understand the behaviour of the FCM algorithm and answer the above questions, the authors examine the values of the objective function and develop three test environments that consist of artificially generated data sets to provide a controlled environment. The paper concludes that FCM can only be applied successfully in high dimensions if the prototypes are initialized very close to the cluster centres.

Suggested Citation

  • Roland Winkler & Frank Klawonn & Rudolf Kruse, 2011. "Fuzzy C-Means in High Dimensional Spaces," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 1(1), pages 1-16, January.
  • Handle: RePEc:igg:jfsa00:v:1:y:2011:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijfsa.2011010101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Qiu & Minjian Liu & Guiping Zhou & Li Wang & Kai Gao, 2019. "An Unsupervised Classification Method for Flame Image of Pulverized Coal Combustion Based on Convolutional Auto-Encoder and Hidden Markov Model," Energies, MDPI, vol. 12(13), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jfsa00:v:1:y:2011:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.