IDEAS home Printed from https://ideas.repec.org/a/igg/jeoe00/v9y2020i4p84-103.html
   My bibliography  Save this article

Forecasting and Technical Comparison of Inflation in Turkey With Box-Jenkins (ARIMA) Models and the Artificial Neural Network

Author

Listed:
  • Erkan Işığıçok

    (Bursa Uludağ University, Turkey)

  • Ramazan Öz

    (Uludağ University, Turkey)

  • Savaş Tarkun

    (Uludağ University, Turkey)

Abstract

Inflation refers to an ongoing and overall comprehensive increase in the overall level of goods and services price in the economy. Today, inflation, which is attempted to be kept under control by central banks or, in the same way, whose price stability is attempted, consists of continuous price changes that occur in all the goods and services used by the consumers. Undoubtedly, in terms of economy, in addition to the realized inflation, inflation expectations are also gaining importance. This situation requires forecasting the future rates of inflation. Therefore, reliable forecasting of the future rates of inflation in a country will determine the policies to be applied by the decision-makers in the economy. The aim of this study is to predict inflation in the next period based on the consumer price index (CPI) data with two alternative techniques and to examine the predictive performance of these two techniques comparatively. Thus, the first of the two main objectives of the study are to forecast the future rates of inflation with two alternative techniques, while the second is to compare the two techniques with respect to statistical and econometric criteria and determine which technique performs better in comparison. In this context, the 9-month inflation in April-December 2019 was forecast by Box-Jenkins (ARIMA) models and Artificial Neural Networks (ANN), using the CPI data which consist of 207 data from January 2002 to March 2019 and the predictive performance of both techniques was examined comparatively. It was observed that the results obtained from both techniques were close to each other.

Suggested Citation

  • Erkan Işığıçok & Ramazan Öz & Savaş Tarkun, 2020. "Forecasting and Technical Comparison of Inflation in Turkey With Box-Jenkins (ARIMA) Models and the Artificial Neural Network," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 9(4), pages 84-103, October.
  • Handle: RePEc:igg:jeoe00:v:9:y:2020:i:4:p:84-103
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEOE.2020100106
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarifa S. Almulhim & Igor Barahona, 2022. "Decision support system for ranking relevant indicators for reopening strategies following COVID-19 lockdowns," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(2), pages 463-491, April.
    2. Abir HASSAN & Mahbubul Md. ALAM & Azmaine FAEIQUE, 2023. "Forecasting Monthly Inflation in Bangladesh: A Seasonal Autoregressive Moving Average (SARIMA) Approach," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 7(2), pages 25-43.
    3. Daniel Osezua Aikhuele & Ayodele A. Periola & Elijah Aigbedion & Herold U. Nwosu, 2022. "Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 11(1), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jeoe00:v:9:y:2020:i:4:p:84-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.