IDEAS home Printed from https://ideas.repec.org/a/igg/jeis00/v16y2020i4p1-16.html
   My bibliography  Save this article

Research on Text Classification Based on Automatically Extracted Keywords

Author

Listed:
  • Pin Ni

    (University of Auckland, New Zealand)

  • Yuming Li

    (University of Auckland, New Zealand & University of Liverpool, UK)

  • Victor Chang

    (Teesside University, UK)

Abstract

Automatic keywords extraction and classification tasks are important research directions in the domains of NLP (natural language processing), information retrieval, and text mining. As the fine granularity abstracted from text data, keywords are also the most important feature of text data, which has great practical and potential value in document classification, topic modeling, information retrieval, and other aspects. The compact representation of documents can be achieved through keywords, which contains massive significant information. Therefore, it may be quite advantageous to realize text classification with high-dimensional feature space. For this reason, this study designed a supervised keyword classification method based on TextRank keyword automatic extraction technology and optimize the model with the genetic algorithm to contribute to modeling the keywords of the topic for text classification.

Suggested Citation

  • Pin Ni & Yuming Li & Victor Chang, 2020. "Research on Text Classification Based on Automatically Extracted Keywords," International Journal of Enterprise Information Systems (IJEIS), IGI Global, vol. 16(4), pages 1-16, October.
  • Handle: RePEc:igg:jeis00:v:16:y:2020:i:4:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEIS.2020100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jeis00:v:16:y:2020:i:4:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.