IDEAS home Printed from https://ideas.repec.org/a/igg/jehmc0/v12y2021i3p55-73.html
   My bibliography  Save this article

Towards Better Segmentation of Abnormal Part in Multimodal Images Using Kernel Possibilistic C Means Particle Swarm Optimization With Morphological Reconstruction Filters: Combination of KFCM and PSO With Morphological Filters

Author

Listed:
  • Sumathi R.

    (KARE, India)

  • Venkatesulu Mandadi

    (KARE, India)

Abstract

The authors designed an automated framework to segment tumors with various image sequences like T1, T2, and post-processed MRI multimodal images. Contrast-limited adaptive histogram equalization method is used for preprocessing images to enhance the intensity level and view the tumor part clearly. With the combination of kernel possibilistic c means clustering with particle swarm optimization technique, a tumor part is segmented, and morphological filters are applied to remove the unrelated outlier pixels in the segmented image to detect the accurate tumor part. The authors collected various image sequences from online resources like Harvard brain dataset, BRATS, and RIDER, and a few from clinical datasets. Efficiency is ensured by computing various performance metrics like Jaccard Index MSE, PSNR, sensitivity, specificity, accuracy, and computational time. The proposed approach yields 97.06% segmentation accuracy and 98.08% classification accuracy for multimodal images with an average of 5s for all multimodal images.

Suggested Citation

  • Sumathi R. & Venkatesulu Mandadi, 2021. "Towards Better Segmentation of Abnormal Part in Multimodal Images Using Kernel Possibilistic C Means Particle Swarm Optimization With Morphological Reconstruction Filters: Combination of KFCM and PSO ," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 12(3), pages 55-73, May.
  • Handle: RePEc:igg:jehmc0:v:12:y:2021:i:3:p:55-73
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEHMC.20210501.oa4
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jehmc0:v:12:y:2021:i:3:p:55-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.