IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v8y2012i2p44-63.html
   My bibliography  Save this article

Classifying Very High-Dimensional Data with Random Forests Built from Small Subspaces

Author

Listed:
  • Baoxun Xu

    (Harbin Institute of Technology Shenzhen Graduate School, China)

  • Joshua Zhexue Huang

    (Shenzhen Institutes of Advanced Technology and Chinese Academy of Sciences, China)

  • Graham Williams

    (Shenzhen Institutes of Advanced Technology, and Chinese Academy of Sciences, China)

  • Qiang Wang

    (Harbin Institute of Technology Shenzhen Graduate School, China)

  • Yunming Ye

    (Harbin Institute of Technology Shenzhen Graduate School, China)

Abstract

The selection of feature subspaces for growing decision trees is a key step in building random forest models. However, the common approach using randomly sampling a few features in the subspace is not suitable for high dimensional data consisting of thousands of features, because such data often contains many features which are uninformative to classification, and the random sampling often doesn’t include informative features in the selected subspaces. Consequently, classification performance of the random forest model is significantly affected. In this paper, the authors propose an improved random forest method which uses a novel feature weighting method for subspace selection and therefore enhances classification performance over high-dimensional data. A series of experiments on 9 real life high dimensional datasets demonstrated that using a subspace size of features where M is the total number of features in the dataset, our random forest model significantly outperforms existing random forest models.

Suggested Citation

  • Baoxun Xu & Joshua Zhexue Huang & Graham Williams & Qiang Wang & Yunming Ye, 2012. "Classifying Very High-Dimensional Data with Random Forests Built from Small Subspaces," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 8(2), pages 44-63, April.
  • Handle: RePEc:igg:jdwm00:v:8:y:2012:i:2:p:44-63
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2012040103
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Wang & Thanh-Tung Nguyen & Joshua Z. Huang & Thuy Thi Nguyen, 2018. "An efficient random forests algorithm for high dimensional data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 953-972, December.
    2. Zhao, He & Williams, Graham J. & Huang, Joshua Zhexue, 2017. "wsrf: An R Package for Classification with Scalable Weighted Subspace Random Forests," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i03).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:8:y:2012:i:2:p:44-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.