IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v5y2009i3p1-27.html
   My bibliography  Save this article

A Survey of Extract–Transform–Load Technology

Author

Listed:
  • Panos Vassiliadis

    (University of Ioannina, Greece)

Abstract

The software processes that facilitate the original loading and the periodic refreshment of the data warehouse contents are commonly known as Extraction-Transformation-Loading (ETL) processes. The intention of this survey is to present the research work in the field of ETL technology in a structured way. To this end, we organize the coverage of the field as follows: (a) first, we cover the conceptual and logical modeling of ETL processes, along with some design methods, (b) we visit each stage of the E-T-L triplet, and examine problems that fall within each of these stages, (c) we discuss problems that pertain to the entirety of an ETL process, and, (d) we review some research prototypes of academic origin.

Suggested Citation

  • Panos Vassiliadis, 2009. "A Survey of Extract–Transform–Load Technology," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 5(3), pages 1-27, July.
  • Handle: RePEc:igg:jdwm00:v:5:y:2009:i:3:p:1-27
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2009070101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Schneider & Stefan Seidel & Marcus Basalla & Jan Brocke, 2023. "Reuse, Reduce, Support: Design Principles for Green Data Mining," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 65(1), pages 65-83, February.
    2. David Gil & Magnus Johnsson & Higinio Mora & Julian Szymanski, 2019. "Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems," Complexity, Hindawi, vol. 2019, pages 1-3, March.
    3. Zhan, Yuanzhu & Tan, Kim Hua, 2020. "An analytic infrastructure for harvesting big data to enhance supply chain performance," European Journal of Operational Research, Elsevier, vol. 281(3), pages 559-574.
    4. Henrik tom Wörden & Florian Spreckelsen & Stefan Luther & Ulrich Parlitz & Alexander Schlemmer, 2024. "Mapping Hierarchical File Structures to Semantic Data Models for Efficient Data Integration into Research Data Management Systems," Data, MDPI, vol. 9(2), pages 1-15, January.
    5. Lawson, James G. & Street, Daniel A., 2021. "Detecting dirty data using SQL: Rigorous house insurance case," Journal of Accounting Education, Elsevier, vol. 55(C).
    6. Benedict Bender & Clementine Bertheau & Tim Körppen & Hannah Lauppe & Norbert Gronau, 2022. "A proposal for future data organization in enterprise systems—an analysis of established database approaches," Information Systems and e-Business Management, Springer, vol. 20(3), pages 441-494, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:5:y:2009:i:3:p:1-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.