IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v4y2008i3p1-14.html
   My bibliography  Save this article

RCUBE: Parallel Multi-Dimensional ROLAP Indexing

Author

Listed:
  • Frank Dehne

    (Carleton University, Canada)

  • Todd Eavis

    (Concordia University, Canada)

  • Andrew Rau-Chaplin

    (Dalhousie University, Canada)

Abstract

This article addresses the query performance issue for Relational OLAP (ROLAP) datacubes. We present RCUBE, a distributed multidimensional ROLAP indexing scheme which is practical to implement, requires only a small communication volume, and is fully adapted to distributed disks. Our solution is efficient for spatial searches in high dimensions and scalable in terms of data sizes, dimensions, and number of processors. Our method is also incrementally maintainable. Using “surrogate” group-bys, it allows for the efficient processing of arbitrary OLAP queries on partial cubes, where not all of the group-bys have been materialized. Our experiments with RCUBE show that the ROLAP advantage of better scalability, in comparison to MOLAP, can be maintained while providing a fast and flexible index for OLAP queries.

Suggested Citation

  • Frank Dehne & Todd Eavis & Andrew Rau-Chaplin, 2008. "RCUBE: Parallel Multi-Dimensional ROLAP Indexing," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 4(3), pages 1-14, July.
  • Handle: RePEc:igg:jdwm00:v:4:y:2008:i:3:p:1-14
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdwm.2008070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:4:y:2008:i:3:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.