IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v20y2024i1p1-17.html
   My bibliography  Save this article

GTFN: Knowledge Tracing Model Based on Graph Temporal Fusion Networks

Author

Listed:
  • Meng Huang

    (Xi 'an Technological University, China)

  • Ting Wei

    (Xi 'an Technological University, China)

Abstract

With the development of smart education, gaining insights into students' understanding during the learning process is crucial in teaching. However, traditional knowledge tracking methods face challenges in capturing the intricate relationships between problems and knowledge points, as well as students' temporal learning changes. Therefore, we design a knowledge tracking model based on a graph temporal fusion network. Firstly, we construct the structure of the question and knowledge skill graph. Then, we design a knowledge graph encoder layer to capture the complex relationships between questions and knowledge skills. Next, we apply a sequential information extraction layer to dynamically model the outputs of each layer in the upper network over time, capturing students' knowledge changes at different time steps. Finally, we use a dynamic attention aggregation network to learn node information at different levels and time sequences. Experimental results on three datasets demonstrate the effectiveness of our method.

Suggested Citation

  • Meng Huang & Ting Wei, 2024. "GTFN: Knowledge Tracing Model Based on Graph Temporal Fusion Networks," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 20(1), pages 1-17, January.
  • Handle: RePEc:igg:jdwm00:v:20:y:2024:i:1:p:1-17
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.345406
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:20:y:2024:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.