IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v19y2023i1p1-16.html
   My bibliography  Save this article

Application of Improved Chameleon Swarm Algorithm and Improved Convolution Neural Network in Diagnosis of Skin Cancer

Author

Listed:
  • Wu Beibei

    (Sanquan College of Xinxiang Medical University, China)

  • Nikolaj Jade

    (University of Wrocław, Poland)

Abstract

Skin cancer is affected by the uncommon evolution of skin cells and is a deadly type of cancer. In addition, skin lesion is affected by numerous factors, such as exposure to the sun, infections, allergies, etc. These skin illnesses have become a challenge in therapeutic diagnosis because of virtual resemblances, where image classification is vital to sufficiently diagnose dissimilar lesions. Therefore, early diagnosis is significant and can avert skin cancers like focal cell carcinoma and melanoma. A deep learning-based computer analyzing model can be an automatic solution in medical evaluations to overcome this issue. Hence, this paper suggests an improved chameleon swarm algorithm and convolutional neural networks (ICSA-CNN) for effective skin cancer identification and classification. The data are collected from the Kaggle dataset for classifying skin cancer. Chameleon swarm algorithm is a clustering technique utilized in data mining to the cluster dataset utilizing dynamic systems, and it can resolve constrained and global numerical optimization issues in skin cancer detection.

Suggested Citation

  • Wu Beibei & Nikolaj Jade, 2023. "Application of Improved Chameleon Swarm Algorithm and Improved Convolution Neural Network in Diagnosis of Skin Cancer," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 19(1), pages 1-16, January.
  • Handle: RePEc:igg:jdwm00:v:19:y:2023:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.325059
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luong, Thi Mai & Scheule, Harald, 2022. "Benchmarking forecast approaches for mortgage credit risk for forward periods," European Journal of Operational Research, Elsevier, vol. 299(2), pages 750-767.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    2. Medina-Olivares, Victor & Lindgren, Finn & Calabrese, Raffaella & Crook, Jonathan, 2023. "Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour," European Journal of Operational Research, Elsevier, vol. 310(2), pages 860-873.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:19:y:2023:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.