IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v16y2020i4p84-94.html
   My bibliography  Save this article

An Improvement of K-Medoids Clustering Algorithm Based on Fixed Point Iteration

Author

Listed:
  • Xiaodi Huang

    (Hefei University, China)

  • Minglun Ren

    (Hefei University of Technology, Hefei, China)

  • Zhongfeng Hu

    (Hefei University, China)

Abstract

The process of K-medoids algorithm is that it first selects data randomly as initial centers to form initial clusters. Then, based on PAM (partitioning around medoids) algorithm, centers will be sequential replaced by all the remaining data to find a result has the best inherent convergence. Since PAM algorithm is an iterative ergodic strategy, when the data size or the number of clusters are huge, its expensive computational overhead will hinder its feasibility. The authors use the fixed-point iteration to search the optimal clustering centers and build a FPK-medoids (fixed point-based K-medoids) algorithm. By constructing fixed point equations for each cluster, the problem of searching optimal centers is converted into the solving of equation set in parallel. The experiment is carried on six standard datasets, and the result shows that the clustering efficiency of proposed algorithm is significantly improved compared with the conventional algorithm. In addition, the clustering quality will be markedly enhanced in handling problems with large-scale datasets or a large number of clusters.

Suggested Citation

  • Xiaodi Huang & Minglun Ren & Zhongfeng Hu, 2020. "An Improvement of K-Medoids Clustering Algorithm Based on Fixed Point Iteration," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 16(4), pages 84-94, October.
  • Handle: RePEc:igg:jdwm00:v:16:y:2020:i:4:p:84-94
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.2020100105
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:16:y:2020:i:4:p:84-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.