IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v15y2019i3p1-27.html
   My bibliography  Save this article

Efficient Algorithm for Mining High Utility Pattern Considering Length Constraints

Author

Listed:
  • Kuldeep Singh

    (IIT (BHU), Varanasi, India)

  • Bhaskar Biswas

    (IIT (BHU), Varanasi, India)

Abstract

High utility itemset (HUI) mining is one of the popular and important data mining tasks. Several studies have been carried out on this topic, which often discovers a very large number of itemsets and rules, which reduces not only the efficiency but also the effectiveness of HUI mining. In order to increase the efficiency and discover more interesting HUIs, constraint-based mining plays an important role. To address this issue, the authors propose an algorithm to discover HUIs with length constraints named EHIL (Efficient High utility Itemsets with Length constraints) to decrease the number of HUIs by removing tiny itemsets. EHIL adopts two new upper bound named sub-tree and local utility for pruning and modify them by incorporating length constraints. To reduce the dataset scans, the proposed algorithm uses transaction merging and dataset projection techniques. The execution time improvements ranged from a modest five percent to two orders of magnitude across benchmark datasets. The memory usage is up to twenty-eight times less than state-of-the-art algorithm FHM+.

Suggested Citation

  • Kuldeep Singh & Bhaskar Biswas, 2019. "Efficient Algorithm for Mining High Utility Pattern Considering Length Constraints," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 15(3), pages 1-27, July.
  • Handle: RePEc:igg:jdwm00:v:15:y:2019:i:3:p:1-27
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.2019070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:15:y:2019:i:3:p:1-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.