IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v14y2018i3p22-43.html
   My bibliography  Save this article

Multiple Decisional Query Optimization in Big Data Warehouse

Author

Listed:
  • Ratsimbazafy Rado

    (University of Lyon, Bron, France)

  • Omar Boussaid

    (University of Lyon, Bron, France)

Abstract

Data warehousing (DW) area has always motivated a plethora of hard optimization problem that cannot be solved in polynomial time. Those optimization problems are more complex and interesting when it comes to multiple OLAP queries. In this article, the authors explore the potential of distributed environment for an established data warehouse, database-related optimization problem, the problem of Multiple Query Optimization (MQO). In traditional DW materializing views is an optimization technic to solve such problem by storing pre-computed join or frequently asked queries. In this era of big data this kind of view materialization is not suitable due to the data size. In this article, the authors tackle the problem of MQO on distributed DW by using a multiple, small, shared and easy to maintain shared data. The evaluation shows that, compared to available default execution engine, the authors' approach consumes on average 20% less memory in the Map-scan task and it is 12% faster regarding the execution time of interactive and reporting queries from TPC-DS.

Suggested Citation

  • Ratsimbazafy Rado & Omar Boussaid, 2018. "Multiple Decisional Query Optimization in Big Data Warehouse," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 14(3), pages 22-43, July.
  • Handle: RePEc:igg:jdwm00:v:14:y:2018:i:3:p:22-43
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.2018070102
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:14:y:2018:i:3:p:22-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.