IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v14y2018i2p37-59.html
   My bibliography  Save this article

Dynamic Itemset Hiding Algorithm for Multiple Sensitive Support Thresholds

Author

Listed:
  • Ahmet Cumhur Öztürk

    (İzmir Institute of Technology, İzmir, Turkey)

  • Belgin Ergenç

    (İzmir Institute of Technology, İzmir, Turkey)

Abstract

This article describes how association rule mining is used for extracting relations between items in transactional databases and is beneficial for decision-making. However, association rule mining can pose a threat to the privacy of the knowledge when the data is shared without hiding the confidential association rules of the data owner. One of the ways hiding an association rule from the database is to conceal the itemsets (co-occurring items) from which the sensitive association rules are generated. These sensitive itemsets are sanitized by the itemset hiding processes. Most of the existing solutions consider single support thresholds and assume that the databases are static, which is not true in real life. In this article, the authors propose a novel itemset hiding algorithm designed for the dynamic database environment and consider multiple itemset support thresholds. Performance comparisons of the algorithm is done with two dynamic algorithms on six different databases. Findings show that their dynamic algorithm is more efficient in terms of execution time and information loss and guarantees to hide all sensitive itemsets.

Suggested Citation

  • Ahmet Cumhur Öztürk & Belgin Ergenç, 2018. "Dynamic Itemset Hiding Algorithm for Multiple Sensitive Support Thresholds," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 14(2), pages 37-59, April.
  • Handle: RePEc:igg:jdwm00:v:14:y:2018:i:2:p:37-59
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.2018040103
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:14:y:2018:i:2:p:37-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.