IDEAS home Printed from https://ideas.repec.org/a/igg/jdst00/v6y2015i2p13-27.html
   My bibliography  Save this article

Reduced Topologically Real-World Networks: A Big-Data Approach

Author

Listed:
  • Marcello Trovati

    (Department of Computing and Mathematics, University of Derby, Derby, UK)

Abstract

The topological and dynamical properties of real-world networks have attracted extensive research from a variety of multi-disciplinary fields. They, in fact, model typically big datasets which pose interesting challenges, due to their intrinsic size and complex interactions, as well as the dependencies between their different sub-parts. Therefore, defining networks based on such properties, is unlikely to produce usable information due to their complexity and the data inconsistencies which they typically contain. In this paper, the authors discuss the evaluation of a method as part of ongoing research which aims to mine data to assess whether their associated networks exhibit properties comparable to well-known structures, namely scale-free, small world and random networks. For this, they will use a large dataset containing information on the seismologic activity recorded by the European-Mediterranean Seismological Centre. The authors will show that it provides an accurate, agile, and scalable tool to extract useful information. This further motivates their effort to produce a big data analytics tool which will focus on obtaining in-depth intelligence from both structured and unstructured big datasets. This will ultimately lead to a better understanding and prediction of the properties of the system(s) they model.

Suggested Citation

  • Marcello Trovati, 2015. "Reduced Topologically Real-World Networks: A Big-Data Approach," International Journal of Distributed Systems and Technologies (IJDST), IGI Global, vol. 6(2), pages 13-27, April.
  • Handle: RePEc:igg:jdst00:v:6:y:2015:i:2:p:13-27
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDST.2015040102
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rehman, Muhammad Habib ur & Chang, Victor & Batool, Aisha & Wah, Teh Ying, 2016. "Big data reduction framework for value creation in sustainable enterprises," International Journal of Information Management, Elsevier, vol. 36(6), pages 917-928.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdst00:v:6:y:2015:i:2:p:13-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.