IDEAS home Printed from https://ideas.repec.org/a/igg/jdst00/v14y2023i2p1-15.html
   My bibliography  Save this article

Analysis on the Steps of Physical Education Teaching Based on Deep Learning

Author

Listed:
  • Aixia Dong

    (Wuxi Institute of Technology, China)

Abstract

The rapid progress of the internet of things and artificial intelligence has brought new opportunities for the construction and development of intelligent sports. This paper designs an analysis and evaluation system of physical education teaching steps based on deep learning technology. The intelligent wearable devices are used to conduct real-time dynamic monitoring of students' exercise steps and heart rate in class so as to build a sports teaching activity data set. The authors analyze the time step sequence based on transformer deep model to realize the estimation of motion effect. In addition, they propose a hierarchical fusion model based on transformer, which makes full use of the steps and heart rate information to predict the abnormal situation in physical education. The experimental results show the effectiveness of the system.

Suggested Citation

  • Aixia Dong, 2023. "Analysis on the Steps of Physical Education Teaching Based on Deep Learning," International Journal of Distributed Systems and Technologies (IJDST), IGI Global, vol. 14(2), pages 1-15, January.
  • Handle: RePEc:igg:jdst00:v:14:y:2023:i:2:p:1-15
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDST.317937
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuchao Yu & Xianchao Xiu & Yunhui Li, 2022. "A Survey on Deep Transfer Learning and Beyond," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhencheng Fan & Zheng Yan & Shiping Wen, 2023. "Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdst00:v:14:y:2023:i:2:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.